Literature Review Role Of Matrix Metalloproteinase In Cancer Pain

Authors

  • Ekawaty Suryani Mastari Institut Kesehatan Helvetia Medan
  • Fitri Aidani Ulfa Institut Kesehatan Helvetia Medan
  • Ningrum Wahyuni Institut Kesehatan Helvetia Medan
  • Noradina Noradina Imelda University, Medan
  • Meriani HS Imelda University, Medan

DOI:

https://doi.org/10.59680/ishel.v1i4.890

Keywords:

Cancer pain, MMP, cytokine, neuroinflammation

Abstract

Cancer pain occurs in more than half of cancer patients and affects their quality of life. The complexities of proinflammatory molecules in the tumor microenvironment contribute to pain. The MMPs, as proteolytic enzymes involved in cancer cell migration towards the surrounding environment, demonstrate their connection to the development of pain in cancer. As complex molecules, MMPs can be influenced by various cytokines and chemokines, mainly throughout neuroinflammation, which decreases neuron sensitivity and boosts hyperexcitability in pain-controlling mechanisms.

References

Argroof, C. E. and McCleane, G. (eds) (2009) Pain Management Secrets. third edit. Philadelphia: Elsevier.

Arrighi, N. et al. (2010) ‘Nerve growth factor signaling in prostate health and disease’, Growth Factors, 28(3), pp. 191–201. doi: 10.3109/08977190903578678.

Baspinar, S. et al. (2017) ‘Expression of NGF, GDNF and MMP-9 in prostate carcinoma’, Pathology Research and Practice. Elsevier GmbH., 213(5), pp. 483–489. doi: 10.1016/j.prp.2017.02.007.

Bernard-Trifilo, J. A. et al. (2005) ‘Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology’, Journal of Neurochemistry, 93(4), pp. 834–849. doi: 10.1111/j.1471-4159.2005.03062.x.

Brehmer, B., Biesterfeld, S. and Jakse, G. (2003) ‘Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue’, Prostate Cancer and Prostatic Diseases, 6(3), pp. 217–222. doi: 10.1038/sj.pcan.4500657.

Calvo, M. and Bennett, D. L. H. (2012) ‘The mechanisms of microgliosis and pain following peripheral nerve injury’, Experimental Neurology. Elsevier Inc., 234(2), pp. 271–282. doi: 10.1016/j.expneurol.2011.08.018.

Cauwe, B., Steen, P. E. V. Den and Opdenakker, G. (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases, Critical Reviews in Biochemistry and Molecular Biology. doi: 10.1080/10409230701340019.

Chen, G. et al. (2018) ‘Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes’, Neuroscience Bulletin. Springer Singapore, 34(1), pp. 98–108. doi: 10.1007/s12264-017-0145-y.

Clark, A. K. et al. (2007) ‘Role of spinal microglia in rat models of peripheral nerve injury and inflammation’, European Journal of Pain, 11(2), pp. 223–230. doi: 10.1016/j.ejpain.2006.02.003.

Cui, N. et al. (2017) ‘Biochemical and Biological Attributes of Matrix Metalloproteinases HHS Public Access Author manuscript’, Prog Mol Biol Transl Sci, 147(617), pp. 1–73. doi: 10.1016/bs.pmbts.2017.02.005.

Djuric, T. and Zivkovic, M. (2017) ‘Overview of MMP Biology and Gene Associations in Human DIseases’, in Intech. Belgrade, pp. 3–35. doi: http://dx.doi.org/10.5772/57353.

Feng, S. et al. (2016) ‘Matrix Metalloproteinase-9 -1562C/T Gene Polymorphism Is Associated with Diabetic Nephropathy’, BioMed Research International, 2016. doi: 10.1155/2016/1627143.

Gonzalez-Avila, G. et al. (2019) ‘Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer’, Critical Reviews in Oncology/Hematology. Elsevier, 137(October 2018), pp. 57–83. doi: 10.1016/j.critrevonc.2019.02.010.

Greco, M. T. et al. (2014) ‘Quality of cancer pain management: An update of a systematic review of undertreatment of patients with cancer’, Journal of Clinical Oncology, 32(36), pp. 4149–4154. doi: 10.1200/JCO.2014.56.0383.

Guedon, J.-M. G. et al. (2016) ‘Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain’, Pain, 157(6), pp. 1239–1247. doi: 110.1097/j.pain.0000000000000514.

Guo, W. et al. (2007) ‘Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain’, Journal of Neuroscience, 27(22), pp. 6006–6018. doi: 10.1523/JNEUROSCI.0176-07.2007.

Hanna, M. and Zylicz, Z. (Ben) (eds) (2013) Cancer pain. London: Springer. doi: 10.1007/978-0-85729-230-8.

Hansen, R. R. and Malcangio, M. (2013) ‘Astrocytes - Multitaskers in chronic pain’, European Journal of Pharmacology. Elsevier, 716(1–3), pp. 120–128. doi: 10.1016/j.ejphar.2013.03.023.

Hill, J. W. et al. (2012) ‘INTRANUCLEAR MATRIX METALLOPROTEINASES PROMOTE DNA DAMAGE AND APOPTOSIS INDUCED BY OXYGEN– GLUCOSE DEPRIVATION IN NEURONS’, Neuroscience, (505), pp. 277–290. doi: 10.1016/j.neuroscience.2012.06.019.

Honore, P. et al. (2000) ‘Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons’, Neuroscience, 98(3), pp. 585–598. doi: 10.1016/S0306-4522(00)00110-X.

Jakub, K. (2018) ‘Cancer-Related Pain’, clinical journal of oncology nursing, 22(6), pp. 607–610.

Ji, R. R. et al. (2006) ‘Possible role of spinal astrocytes in maintaining chronic pain sensitization: Review of current evidence with focus on bFGF/JNK pathway’, Neuron Glia Biology, 2(4), pp. 259–269. doi: 10.1017/S1740925X07000403.

Ji, R. R. et al. (2009) ‘MMP regulation of neuropathic pain’, Trends in pharmacological sciences, 30(7), p. 336. doi: 10.1016/j.tips.2009.04.002.MMP.

Johnson, J. L. (2007) ‘Matrix metalloproteinases: Influence on smooth muscle cells and atherosclerotic plaque stability’, Expert Review of Cardiovascular Therapy, 5(2), pp. 265–282. doi: 10.1586/14779072.5.2.265.

Jurga, A. M. et al. (2017) ‘Blockade of P2X4 receptors inhibits neuropathic pain-related behavior by preventing MMP-9 activation and, consequently, pronociceptive interleukin release in a rat model’, Frontiers in Pharmacology, 8(FEB), pp. 1–18. doi: 10.3389/fphar.2017.00048.

Kawasaki, Y. et al. (2008) ‘Distinct roles of matrix metalloproteases in the early- and late- phase development of neuropathic pain’, Nature Medicine, 14(3), pp. 331–336. doi: 10.1038/jid.2014.371.

Kessenbrock, K., Placks, V. and Werb, Z. (2015) ‘Matrix Metalloproteinases: Regulators of the Tumor Microenvironment’, Cell, 135(2), pp. 612–615. doi: 10.1016/j.cell.2010.03.015.

Klein, T. and Bischoff, R. (2011) ‘Physiology and pathophysiology of matrix metalloproteases’, Amino Acids, 41(2), pp. 271–290. doi: 10.1007/s00726-010-0689-x.

Leppert, W. et al. (2016) ‘Pathophysiology and clinical characteristics of pain in most common locations in cancer patients’, Journal of Physiology and Pharmacology, 67(6), pp. 787–799.

Lescot, T. et al. (2010) ‘Effect of acute poly(ADP-ribose) polymerase inhibition by 3-AB on blood-brain barrier permeability and edema formation after focal traumatic brain injury in rats’, Journal of Neurotrauma, 27(6), pp. 1069–1079. doi: 10.1089/neu.2009.1188.

Li, J. et al. (2016) N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases, Pain. doi: 10.1097/j.pain.0000000000000575.

Li, Y. et al. (2016) ‘Dopamine increases NMDA stimulated calcium flux through MMp dependent mechanism.pdf’, Eur J Neuroscience, 43(2), pp. 194–203. doi: 10.1111/ejn.13146.

Liu, S. et al. (2018) ‘IL-18 Contributes to Bone Cancer Pain by Regulating Glia Cells and Neuron Interaction’, Journal of Pain. Elsevier Inc., 19(2), pp. 186–195. doi: 10.1016/j.jpain.2017.10.003.

Milligan, E. D. et al. (2003) ‘Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats’, Journal of Neuroscience, 23(3), pp. 1026–1040. doi: 10.1523/jneurosci.23-03-01026.2003.

Miyoshi, K. et al. (2008) ‘Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury’, Journal of Neuroscience, 28(48), pp. 12775–12787. doi: 10.1523/JNEUROSCI.3512-08.2008.

Nagase, H., Visse, R. and Murphy, G. (2006) ‘Structure and function of matrix metalloproteinases and TIMPs’, Cardiovascular Research, 69(3), pp. 562–573. doi: 10.1016/j.cardiores.2005.12.002.

Nakao, K. et al. (2019) ‘Yokukansan alleviates cancer pain by suppressing matrix metalloproteinase-9 in a mouse bone metastasis model’, Evidence-based Complementary and Alternative Medicine. Hindawi, 2019. doi: 10.1155/2019/2956920.

Nishida, Y. et al. (2008) ‘Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for ProMMP-2 generates active MMP-2’, Cancer Research, 68(21), pp. 9096–9104. doi: 10.1158/0008-5472.CAN-08-2522.

Nissinen, L. and Kähäri, V.-M. (2014) ‘Matrix metalloproteinases in inflammation’, Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(8), pp. 2571–2580. doi: 10.1016/j.bbagen.2014.03.007.

Okada, Y. et al. (2003) ‘Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer’, Surgery, 134(2), pp. 293–299. doi: 10.1067/msy.2003.239.

Oliveira, A. et al. (2014) ‘Interleukin-1? genotype and circulating levels in cancer patients: Metastatic status and pain perception’, Clinical Biochemistry, 47(13–14), pp. 1209–1213.

de Oliveira, C. M. B. et al. (2011) ‘Cytokines and Pain’, Revista Brasileira de Anestesiologia. Elsevier, 61(2), pp. 255–265. doi: 10.1016/S0034-7094(11)70029-0.

Oosterling, A. et al. (2016) ‘Neuropathic Pain Components in Patients with Cancer: Prevalence, Treatment, and Interference with Daily Activities’, Pain Practice, 16(4), pp. 413–421. doi: 10.1111/papr.12291.

Parks, W. C., Wilson, C. L. and López-Boado, Y. S. (2004) ‘Matrix metalloproteinases as modulators of inflammation and innate immunity’, Nature Reviews Immunology, 4(8), pp. 617–629. doi: 10.1038/nri1418.

Portenoy, R. K. and Ahmed, E. (2018) ‘Cancer Pain Syndromes’, Hematology/Oncology Clinics of North America. Elsevier Inc, 32(3), pp. 371–386. doi: 10.1016/j.hoc.2018.01.002.

Ra, H. J. and Parks, W. C. (2007) ‘Control of matrix metalloproteinase catalytic activity’, Matrix Biology, 26(8), pp. 587–596. doi: 10.1016/j.matbio.2007.07.001.

Rao, V. H. et al. (2014) ‘MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells’, Physiological Reports, 2(2), p. e00224. doi: 10.1002/phy2.224.

Rojewska, E. et al. (2014) ‘Involvement of pro- and antinociceptive factors in minocycline analgesia in rat neuropathic pain model’, Journal of Neuroimmunology. Elsevier B.V., 277(1–2), pp. 57–66. doi: 10.1016/j.jneuroim.2014.09.020.

Russo, M. M. and Sundaramurthi, T. (2019) ‘An Overview of Cancer Pain: Epidemiology and Pathophysiology’, Seminars in Oncology Nursing. Elsevier Inc., 35(3), pp. 223–228. doi: 10.1016/j.soncn.2019.04.002.

Sbai, O. et al. (2010) ‘Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes’, Glia, 58(3), pp. 344–366. doi: 10.1002/glia.20927.

Schmidt, B. L. et al. (2010) ‘Mechanisms of Cancer Pain’, Molecular Intervention, 10(3), pp. 164–178. doi: https://dx.doi.org/10.1124/mi.10.3.7.

Schmidt, B. L. (2014) ‘The neurobiology of cancer pain’, Neuroscientist, 20(5), pp. 546–562. doi: 10.1177/1073858414525828.

Smith, J. A. et al. (2012) ‘Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases’, Brain Research Bulletin. Elsevier Inc., 87(1), pp. 10–20. doi: 10.1016/j.brainresbull.2011.10.004.

Toriseva, M. and Kähäri, V. M. (2009) ‘Proteinases in cutaneous wound healing’, Cellular and Molecular Life Sciences, 66(2), pp. 203–224. doi: 10.1007/s00018-008-8388-4.

Verma, R. P. and Hansch, C. (2007) ‘Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs’, Bioorganic and Medicinal Chemistry, 15(6), pp. 2223–2268. doi: 10.1016/j.bmc.2007.01.011.

Von-Hehn, C. A., Baron, R. and Woolf, C. J. (2012) ‘Deconstructing the Neuropathic Pain Phenotype to Reveal Neural Mechanisms’, Neuron, 73(4), pp. 638–652. doi: 10.1016/j.neuron.2012.02.008.

WHO (2018) Cancer.

Yao, Y. et al. (2018) ‘Effects and mechanism of amyloid ?1-42 on mitochondria in astrocytes’, Molecular Medicine Reports, 17(5), pp. 6997–7004. doi: 10.3892/mmr.2018.8761.

Zhu, Y. F. et al. (2018) ‘Cancer pain and neuropathic pain are associated with A ? sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord’, Molecular pain, 14. doi: 10.1177/1744806918810099.

Downloads

Published

2023-12-30

How to Cite

Ekawaty Suryani Mastari, Fitri Aidani Ulfa, Ningrum Wahyuni, Noradina Noradina, & Meriani HS. (2023). Literature Review Role Of Matrix Metalloproteinase In Cancer Pain. The International Science of Health Journal, 1(4), 68–78. https://doi.org/10.59680/ishel.v1i4.890

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.