Identification Of Metallo?-Lactamses and Integron Genes In Pseudomonas Aeruginosa Isolated From Burn Injury Patients: Phenotype And Genotype

Authors

  • Ashraf Ayyal Mutar Alrashedi Universitas Al-Qadisiyah

DOI:

https://doi.org/10.59680/ishel.v2i4.1457

Keywords:

Multidrug resistant (MDR), Metallo-β lactamases genes , Integron class -1 , Burn infections

Abstract

Pseudomonas aeruginosa, which generates metallo-?-lactamase (MBL), is the cause of infections linked to burn patients, and this is a growing global problem. The objectives of the  recent study were  to determine antibiotic susceptibility of P. aeruginosa isolates,  the presence of  MBLs genes, and Integron gene class-1 . One hundred burn patients at the Al-Hussein Teaching Hospital in Al Smawah, Iraq, were isolated clinically. Twenty (20%) of these were determined to be P. aeruginosa by 16sRNA and biochemical testing. To further identify the antibiotic sensitivity for each isolate was employed by Disc Diffusion Method . The phenotypic MBL production For detected isolates was evaluated by Combined Disc Diffusion Method (CDD). Integron gene class -1 (Int-1) and Genes  encoding  MBLs were identified by Polymerase Chain Reaction (PCR). P. aeruginosa was shown to be totally resistant to ceftriaxone, ampicillin, piperacillin, gentamicin, and ciprofloxacin in this investigation. 90% of the isolates were determined to be multidrug resistant, and different levels of moderate to lowest resistance were observed in Amikacin, Meropenem, Aztreonam, Cefixime, and Levofloxacin. While 90% of the isolates possessed the Int-1 gene, our recorded the absence of  All MBLs genes (Bla IMP, Bla VIM,  Bla GIM ) From All isolates under investigation. Illustrating for the first time how crucial it is to put in place appropriate infection control measures in order to give patients the best care possible and stop the development of these resistant microbes among burn patients.

References

Abdelaziz, S. M., Aboshanab, K. M., Yahia, I. S., Yassien, M. A., & Hassouna, N. A. (2021). Correlation between the antibiotic resistance genes and susceptibility to antibiotics among the carbapenem-resistant Gram-negative pathogens. Antibiotics, 10, 255. https://doi.org/10.3390/antibiotics10030255.

Al-Charrakh, A. H., Al-Awadi, S. J., & Mohammed, A. S. (2016). Detection of metallo-?-lactamase producing Pseudomonas aeruginosa isolated from public and private hospitals in Baghdad, Iraq. Acta Medica Iranica, 54(2).

Ali, M. G., Almoneim, Z. A., & Kareem, S. M. (2023). Evaluated gene expressions of metallo-beta-lactamase genes GIM, VIM, SPM in Pseudomonas aeruginosa clinical isolates. Molecular Biology Reports, 50, 10111-10120. https://doi.org/10.1007/s11033-023-08883-7

Alkhudhairy, M. K., & Al-Shammari, M. M. M. (2020). Prevalence of metallo-?-lactamase-producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New Microbes and New Infections, 35. https://doi.org/10.1016/j.nmni.2020.100661.

Al-Mohammed, T. A., & Mahmood, H. M. (2024). Carbapenem resistance related with biofilm formation and pilin genes in clinical Pseudomonas aeruginosa isolates. International Journal of Pharmaceutical Sciences, 33(1), 72-78. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/2272

Anoar, K. A., Ali, F. A., & Omer, S. A. (2014). Detection of metallo [beta]-lactamase enzyme in some Gram-negative bacteria isolated from burn patients in Sulaimani city, Iraq. European Scientific Journal, 10(3), 485-496.

Bahrami, M., Mohammadi-Sichani, M., & Karbasizadeh, V. (2018). Prevalence of SHV, TEM, CTX-M, and OXA-48 ?-lactamase genes in clinical isolates of Pseudomonas aeruginosa in Bandar-Abbas, Iran. Avicenna Journal of Clinical Microbiology and Infection, 5(4), 86-90. https://doi.org/10.34172/ajcmi..18.

Bandekar, N., Vinodkuma, C. S., Basalarajapp, K. G., Prabhakar, P. J., & Nagaraj, P. (2011). Beta lactamase mediated resistance among Gram-negative bacilli in burn infections. International Journal of Biomedical Research, 2(3), 766-770.

Clinical and Laboratory Standards Institute (CLSI). (2022). Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement M100-S23. Wayne, PA: CLSI. 205 p.

Delarampour, A., Ghalehnoo, Z. R., Khademi, F., & Vaez, H. (2020). Antibiotic resistance patterns and prevalence of class I, II, and III integrons among clinical isolates of Klebsiella pneumoniae. Le Infezioni in Medicina, 8(1), 64-69.

Dent, L., Dana, R. M., & Siddharth, P. (2010). Multi-drug resistant Acinetobacter baumannii: A descriptive study in a city hospital. BMC Infectious Diseases, 10(1).

Drieux, L., Brossier, F., Sougakoff, W., & Jarlier, V. (2008). Phenotypic detection of extended-spectrum ?-lactamase production in Enterobacteriaceae: Review and bench guide. Clinical Microbiology and Infection, 14(1), 90-103.

Ebrahimpour, M., Nikokar, I., Ghasemi, Y., Ebrahim-Saraie, H. S., Araghian, A., & Farahbakhsh, M. (2018). Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa isolates obtained from wastewaters of a burn center in Northern Iran. Annali di Igiene, 30, 112-119.

El-Mosallamy, W. A. E., Osman, A. S., Tabl, H. A. E., & AL-Tabbakh, A. M. (2015). Phenotypic and genotypic methods for detection of metallo-beta-lactamase (M?L) producing Pseudomonas aeruginosa. Egyptian Journal of Medical Microbiology, 24(3), 27-35.

European Centre for Disease Prevention and Control. (2013). Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC. Available at: http://ecdc.europa.eu/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf

Findlay, J., Raro, O. H. F., Poirel, L., et al. (2024). Molecular analysis of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Switzerland 2022–2023. European Journal of Clinical Microbiology and Infectious Diseases, 43, 551–557. https://doi.org/10.1007/s10096-024-04752-8.

Fluit, A., Visser, M., & Schmitz, F. (2014). Molecular detection of antimicrobial resistance. Clinical Microbiology Reviews, 836-871.

Gupta, V., Datta, P., & Chander, J. (2006). Prevalence of metallo-beta-lactamase (MBL) producing Pseudomonas spp. and Acinetobacter spp. in a tertiary care hospital in India. Journal of Infection, 52(5), 311-314.

Heggers, J. P., Haydon, S., Ko, F., Hayward, P. G., Carp, S., & Robson, M. C. (1992). Pseudomonas aeruginosa exotoxin A: Its role in retardation of wound healing: The Lindberg Award. Journal of Burn Care & Rehabilitation, 13(5), 512-518.

Hocquet, D., Berthelot, P., Roussel-Delvallez, M., Favre, R., Jeannot, K., Bajolet, O., et al. (2007). P. aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrobial Agents and Chemotherapy, 51, 3531–3536.

Hosseinia, S. M. J., Naeinib, N. S. H., Khaledic, A., Daymadd, S. F., & Esmaeilid, D. (2016). Evaluate the relationship between class 1 integrons and drug resistance genes in clinical isolates of Pseudomonas aeruginosa. The Open Microbiology Journal, 10, 188-196. DOI: 10.2174/1874285801610010188.

Jafri, S. A., Qasim, M., Masoud, M. S., Ur-Rahman, M., Izhar, M., & Kazmi, S. (2014). Antibiotic resistance of E. coli isolates from urine samples of urinary tract infection (UTI) patients in Pakistan. Bioinformation, 10(7), 419-422.

Lin, H., Feng, C., Zhu, T., Li, A., Liu, S., Zhang, L., Li, Q., Zhang, X., Lin, L., Lu, J., Lin, X., Li, K., Zhang, H., Xu, T., Li, C., & Bao, Q. (2022). Molecular mechanism of the ?-lactamase mediated ?-lactam antibiotic resistance of Pseudomonas aeruginosa isolated from a Chinese teaching hospital. Frontiers in Microbiology, 13, 855961. doi: 10.3389/fmicb.2022.855961.

Lucena, A., Dalla Costa, L. M., Nogueira, K. da S., Matos, A. P., Gales, A. C., & Raboni, S. M. (2014). Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Enfermedades Infecciosas y Microbiología Clínica, 32(10), 625-630. https://doi.org/10.1016/j.eimc.2014.03.015.

McCarthy, K. (2015). Pseudomonas aeruginosa: Evolution of antimicrobial resistance and implications for therapy. Seminars in Respiratory and Critical Care Medicine, 36, 44-55.

Mohemmad, H. J., Abbas, Y. A., & Alkafaji, H. R. (2023). Assessment of beta-lactamases and integrons genes among bacteria isolated from bladder cancer patients with urinary tract infections. Journal of Population Therapy and Clinical Pharmacology, 30(8), e9-e23. DOI: 10.47750/jptcp.2023.30.08.002

Mojica, M. F., Bonomo, R. A., & Fast, W. B. (2016). Metallo-beta-lactamases: Where do we stand? Current Drug Targets, 17, 1029-1050. [CrossRef]

Pitout, J. D. D., Gregson, D. B., Poirel, L., McClure, J. A., Le, P., & Church, D. L. (2005). Detection of Pseudomonas aeruginosa producing metallo-?-lactamases.

Qu, T. T., Zhang, J., Wang, J., Tao, J., Yu, Y. S., et al. (2009). Evaluation of phenotypic tests for detection of M?L-producing P. aeruginosa strains in China. Journal of Clinical Microbiology, 47, 1136-1142.

Rafiee, R., Eftekhar, F., Tabatabaei, S. A., & Tehrani, D. M. (2014). Prevalence of extended-spectrum and metallo ?-lactamase production in AmpC ?-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur Journal of Microbiology, 7(9), e16436. DOI: 10.5812/jjm.16436.

Recio, R., Mancheño, M., Viedma, E., Villa, J., Orellana, M. A., Lora-Tamayo, J., & Chaves, F. (2020). Predictors of mortality in bloodstream infections caused by Pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial virulence. Antimicrobial Agents and Chemotherapy, 64(2), e01759-19.

Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, New York.

Santos, A. L., Santos, A. B. D., Ito, C. R. M., Queiroz, P. H. P. D., Almeida, J. A. D., et al. (2020). Profile of Enterobacteria resistant to beta-lactams. Antibiotics, 9, 410. http://dx.doi.org/10.3390/antibiotics9070410

Shaebth, L. J. (2018). Molecular identification and sequencing of Pseudomonas aeruginosa virulence genes among different isolates in Al-Diwaneyah hospital. Iraqi Journal of Veterinary Sciences, 32(2), 183-188.

Sharifi, H., Pouladfar, G. H., Shakibaie, M. R., Pourabbas, B., Mardaneh, J., & Mansouri, S. H. (2019). Prevalence of ?-lactamase genes, class 1 integrons, major virulence factors, and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran. Iranian Journal of Basic Medical Sciences, 22, 806-812. doi: 10.22038/ijbms.2019.35063.8340

Sid Ahmed, M. A., Khan, F. A., Sultan, A. A., et al. (2020). ?-Lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance and Infection Control, 9, 170. https://doi.org/10.1186/s13756-020-00838-y

Suryadevara, N., Ooi, Y. S., & Ponnaiah, P. (2017). A study on metallo-?-lactamases producing Pseudomonas aeruginosa in water samples from various parts of Malaysia. African Journal of Biotechnology, 16, 573.

Walsh, T. R., Tolemann, M. A., Poirel, L., & Nordman, P. (2005). M?L: The quiet before the storm? Clinical Microbiology Reviews, 18(2), 306-325.

Wood, S. J., Kuzel, T. M., & Shafkhani, S. H. (2023). Pseudomonas aeruginosa: Infections, animal modeling, and therapeutics. Cells, 12(1), 19910.

Yadav, B., & Tyagi, R. D. (2020). Development of molecular methods to detect and control emerging drug-resistance pathogens. In Current Developments in Biotechnology and Bioengineering (pp. 377-419). Netherlands: Elsevier.

Ye, Y., Xu, L., Han, Y., Chen, Z., Liu, C., & Ming, L. (2018). Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Experimental and Therapeutic Medicine, 15, 1143–1149.

Zarei-Yazdeli, M., Eslami, G., Zandi, H., Kiani, M., Barzegar, K., Alipanah, H., Mousavi, S. M., & Shukohifar, M. (2018). Prevalence of class 1, 2, and 3 integrons among multidrug-resistant Pseudomonas aeruginosa in Yazd, Iran. International Journal of Mycobacteriology, 10(5), 300-306.

Published

2024-10-04

How to Cite

Ashraf Ayyal Mutar Alrashedi. (2024). Identification Of Metallo?-Lactamses and Integron Genes In Pseudomonas Aeruginosa Isolated From Burn Injury Patients: Phenotype And Genotype. The International Science of Health Journal, 2(4), 01–12. https://doi.org/10.59680/ishel.v2i4.1457